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Iterative Voting for Inference of Structural Saliency
and Characterization of Subcellular Events
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Abstract—Saliency is an important perceptual cue that occurs at
different levels of resolution. Important attributes of saliency are
symmetry, continuity, and closure. Detection of these attributes
is often hindered by noise, variation in scale, and incomplete
information. This paper introduces the iterative voting method,
which uses oriented kernels for inferring saliency as it relates to
symmetry. A unique aspect of the technique is the kernel topog-
raphy, which is refined and reoriented iteratively. The technique
can cluster and group nonconvex perceptual circular symmetries
along the radial line of an object’s shape. It has an excellent noise
immunity and is shown to be tolerant to perturbation in scale.
The application of this technique to images obtained through
various modes of microscopy is demonstrated. Furthermore, as a
case example, the method has been applied to quantify kinetics
of nuclear foci formation that are formed by phosphorylation of
histone YH2A X following ionizing radiation. Iterative voting has
been implemented in both 2-D and 3-D for multi image analysis.

Index Terms—Foci detection, geometric voting, iterative voting,
segmentation, subcellular localization.

I. INTRODUCTION

HE response of tissues and biological material to exoge-
T nous stimuli, such as ionizing radiation, is often heteroge-
neous and requires a large amount of data for detailed charac-
terization. These responses, which are often multidimensional
in space and time, and can be imaged using digital microscopy.
Quantitative analysis of these multispectral images is a neces-
sary step toward the construction of predictive models. Research
in this area has leveraged machine learning techniques using a
texture field that is based on patterns of protein localization [11]
and variational methods for segmentation of subcellular com-
partments [8], [12], [14], [23]. Nuclear segmentation often pro-
vides context for quantifying protein localizations that are either
nuclear-bound or near nuclear membranes. These protein com-
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plexes may be punctate (e.g., radially symmetric), may vary in
size and shape, and may potentially overlap each other. Thus,
segmentation of protein complexes may become an additional
necessary step for a more refined representation of functional
events that lead to a particular state of a cell. From a human
vision perspective, radial symmetry is an important perceptual
cue for feature-based representation, localization, and segmen-
tation. For example, in protein localization studies, fluorescence
microscopy may be used to quantify nuclear-bound foci forma-
tion, and, in structural biology, cryo-EM may be used to image
macro-molecular assembly for 3-D reconstruction.

In image understanding, saliency or perceptual grouping [6],
[9], [19] can be driven by continuity [21], symmetry, or clo-
sure. Among these, it is well known that symmetry is a preatten-
tive process [1] that improves recognition, provides an efficient
mechanism for scene representation, and aids in reconstruction
and description. Radial symmetry is a special class of symmetry,
which persists in nature at multiple scales. Robust and efficient
detection of inexact radial symmetries facilitates the semantic
representation of images for summarization and interpretation.
At the lowest level, a radial symmetry operator can be used as an
interest operator for detecting critical features that lead, for ex-
ample, toward visual attention. However, interest operators have
to be fast, retain good noise immunity, be sufficiently stable with
respect to the underlying intensity distribution, and be capable
of delineating and resolving nearby features into disjoint events.
Yet, the notion of radial symmetry is used in a weak sense, since
the basic geometry can deviate from convexity and strict sym-
metry for the purpose of approximating the center of mass.

The method proposed here allows inference of saliency from
incomplete boundary information through voting and perceptual
grouping and is implemented through the refinement of specif-
ically tuned voting kernels [24]. Fig. 1 shows several examples
indicating potential application areas. In Fig. 1(a), living cells
are imaged in bright-field, and their responses are tracked as
a function of exogenous stimuli. In Fig. 1(b), a mouse mam-
mary tissue section is stained with a DNA counterstain in one
channel to provide context for localization studies in other chan-
nels [14]. Some of the nuclear regions in this example have
perceptual boundaries. In Fig. 1(c), nuclear foci are visualized
following phosphorylation of histone yH2AX following ion-
izing radiation. In the last example, a protein complex with
two stable resting positions is imaged through cryo-electron mi-
croscopy with the ultimate intent of building a 3-D structure
through large numbers of observations. While the proposed ap-
plication is demonstrated in a number of biological domains, it
has been applied for one biological endpoint that involves quan-
titative assessment of the kinetics of the phosphorylation of hi-
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Fig. 1. Presence of radial symmetries at different physical scales: (a) cells imaged in bright field microscopy mode; (b) nuclei in mouse mammary tissue imaged
with fluorescence microscopy; (c) phosphorylation of histone H2AX within the nuclear region following ionizing radiation; (d) macromolecular assemblies imaged

through cryo-electron microscopy.

stone YH2AX following ionizing radiation. Once these events
are detected, other attributes are also computed for a more com-
plete representation.

Spatial voting has been studied for at least four decades.
Hough introduced the notion of parametric clustering in terms
of well-defined geometry, which was later extended to the
generalized Hough transform [4]. In general, voting operates
on the notion of continuity and proximity, which can occur at
multiple scales, e.g., points, lines, lines of symmetry, or gen-
eralized cylinders. The novelty of our approach is in defining
a series of kernels that vote iteratively along the radial or
tangential directions. Voting along the radial direction leads
to localization of the center of mass, while voting along the
tangential direction enforces continuity. At each iteration, the
kernel orientation is refined until it converges to a single focal
response. Several different variations of these kernels have
been designed and tested. They are cone shaped, have a specific
orientation but variable in scale, and target geometric features
of approximately known dimensions in both 2-D and 3-D. In
the case of radial symmetry, the voting kernels are initially
applied along the gradient direction, then at each consecutive
iteration and at each edge location, the kernel orientation is
aligned along the maximum response in the space. The shape
of the kernel is also refined and focused as the iterative process
continues. The method is applicable to perceptual shape fea-
tures, has excellent noise immunity, is tolerant to variations in
scale, and is applicable to a large class of application domains.

The organization of this paper is as follows. Section II pro-
vides a brief review of the previous research. Section III de-
scribes the basic idea and detailed implementation of evolu-
tionary voting. Section IV defines and explains the parameters
of the algorithm. Section V demonstrates the performance of
the technique on a variety of spatial distributions. Section VI
applies the proposed method to a data set for detailed quantita-
tive analysis. Section VII concludes the paper.

II. REVIEW OF PREVIOUS WORK

The difficulties in the detection of saliency are often due to
variations in scale, noise, and topology. Other complexities
originate from missing data and perceptual boundaries that
lead to diffusion and dispersion of the spatial grouping in the
object space. Fig. 2 shows variations in the shape geometry as
a result of angular deviation between the gradient and radial
vector along an object’s boundary that can result in ambiguity
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Fig. 2. Topological variation as a result of an angular difference between the
radial gradient vectors: (a) circle; (b) ellipse; (c) general convex region.

in the presence of noise. Techniques in the detection of radial
symmetries can be classified into three different categories: 1)
point operations leading to dense output, 2) clustering based on
parameterized shape models or voting schemes, and 3) iterative
techniques. Point operations are usually a series of cascade
filters that are tuned for radial symmetries. These techniques
use image gradient magnitudes and orientations to infer the
center of mass for blobs of interest [17], [18], [20]. Recent
efforts have focused on speed and reliability [7]. Parametric
clustering techniques are often based on a variant of the Hough
transform, e.g., circle or ellipse finders. These techniques
produce loci of points corresponding to the parametric models
of well-known geometries. These point distributions are then
merged, and model parameters are refined [3]. Nonparametric
clustering techniques operate along the gradient direction to
search for radial symmetry, using either line- or area-based
search. Line-based search [10] is also known as the spoke
filter, where the frequency of occurrence of points normal to
the edge direction is aggregated. In contrast, area-based voting
accumulates votes in a small neighborhood along the gradient
direction. Examples of iterative methods include the level set
method [13] and the regularized centroid transform (RCT) [23],
which iteratively transport boundary points to the local center of
mass. The centroid transform can be classified as curve-based
voting since the voting path is not along a straight line but along
a minimum energy path. Voting paths can be easily distorted
by noise, local structures, and other singularities in the image,
and may lead to over-segmentation. Thus, the problem is often
regularized at different levels through either nonlinear diffusion
of random noise [15], or nonlinear diffusion of speckle noise
[23], or enforcing smoothness of the path leading each point on
the surface to its local centroid [23].

The first two categories of radial symmetry detection can
be summarized as follows. Interest-point operators are fast and
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well suited for detecting small features for higher levels of in-
terpretation and manipulation. Parametric voting techniques are
potentially memory-intensive, depending upon the dimension-
ality of the parameter space, and remain sensitive to small de-
viations from the underlying geometric model. Line- and area-
based voting produce a voting space that is diffuse and subject
to further ad hoc analysis.

Techniques for grouping local features into globally salient
structures have incorporated dynamic programming [21], clus-
tering and graph theoretic methods [22], and tensor voting [9].
While these techniques differ in their methods, they share a
common thread of using continuity and proximity along the
minimum energy path to infer global saliency. The method pro-
posed here falls into the category of iterative techniques, which
are adaptive to geometric perturbation and typically produce
more stable results. This method shares several attributes with
tensor-based voting [9]; however, it differs in that it is iterative
and scalar. It demonstrates excellent performance in the pres-
ence of noise, variations in scale, and topological changes.

In summary, most optimization problems in computer vision
rely on establishing proper geometric constraints and then reg-
ularizing the solution, which is expressed as a gradient search
problem leading to a local minima. Iterative voting operates in
the same fashion, where geometric constraints are expressed
in the shape of the voting kernel and the regularization is em-
bedded in the smoothness of kernel. The iterative process leads
the solution into its local minima by searching for the maximum
response in a local neighborhood.

III. APPROACH

Detection of radial symmetry is iterative where gra-
dient magnitude is projected along the radial direction ac-
cording to a kernel function. The kernel function is smooth
and its topography becomes more focused and dense at
each iteration. Let I(z,y) be the original image, where
the domain points (z,y) are 2-D image coordinates. Let
a(x,y) be the voting direction at each image point, where
a(z,y) = (cos(6(z,y)),sin(f(z,y))) for some angle 0(z,y)
that varies with the image location. Let {7min, "max} be the
radial range and A be the angular range, both defined in
Section IV. It is clear that the object size is never exact; there-
fore, variations in size can be expressed either by specifying
lower and upper bounds, or by an average size measure and
a deviation around it. In our implementation, we have opted
with the former representation. The main advantage is that
if rmin = 1, then one parameter is eliminated at the cost of
higher computational cost and at no loss to reliability. Let
V (%, y; "min, "max, A) be the vote image, dependent on the
radial and angular ranges and having the same dimensions
as the original image. Let A(%, y; "min, Tmax, A) be the local
voting area, defined at each image point (x,y) and dependent
on the radial and angular ranges, defined by
A(Z,Y; Tmins Tmax, A) 1= {(z £ 7 cosd,y £ rsin )|

Tmin <7 <Tmax and 0(z,y) —A<$p<0(z,y) + A}. (1)

Finally, let K (z,y;0,a,A) be a 2-D Gaussian kernel (e.g.,
g(z,y) = (1/V2r0)e” = +¥7)/297 with variance o2, masked
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Fig. 3. Kernel topography: (a)-(e) Evolving kernel for the detection of radial
symmetries (shown at a fixed orientation) has a trapezoidal active area with
Gaussian distribution along both axes. Application of the voting method requires
continuous refinement in the shape of the kernel for improved localization.

by the local voting area A(x,¥; Tmin, "max; A), and oriented
in the voting direction «(z,y). Fig. 3 shows a subset of voting
kernels that vary in topography, scale, and orientation. The
kernel shapes are further described in Section IV.

The iterative voting algorithm is outlined below for radial
symmetry. Naturally, in the case of continuity, the voting di-
rection is along the tangential direction as opposed to the radial
direction.

Iterative Voting

1) Initialize the parameters: Initialize 7y, Tmax, Amax, and
asequence Apax = Ay > Any_1 > -+ > Ay = 0.
Set n := N, where N is the number of iterations, and let
Ay = Apax. Also fix a low gradient threshold, I'y, and
a kernel variance, o, depending on the expected scale of
salient features.

Initialize the saliency feature image: Define the feature
image F'(z,y) to be the local external force at each pixel
of the original image. The external force is often set to the
gradient magnitude or maximum curvature, depending
upon the type of saliency grouping and the presence of
local feature boundaries.

Initialize the voting direction and magnitude: Compute the
image gradient, VI(z,y), and its magnitude, ||VI(z,y)]|.
Define a pixel subset S := {(z,y)| ||VI(z,y)| > Ty}
For each grid point (z,y) € S, define the voting direction
to be

2)

3)

= V@)
a(z,y) = IV I(z,y)|

Compute the votes: Reset the vote image

V (&, ¥; "min, Tmax, An) = 0 for all points (z,y).
For each pixel (x,y) € S, update the vote image as
follows:

4)

V(.’L’, Y: T'min; Tmax; A'n) = V(.’E, Y: T'min; Tmax; An)
+ Z F(z+u,y+v)K(u,v;0,a,A).
(4,0) EA(Z, Y3 min Tmax;An)

5) Update the voting direction: For each grid point
(z,y) € S, revise the voting direction. Let

(u*,v*)zarg V(’LL,’U; Tmins "max» A'n)

max
(u,0) EA(Z, Y5 min Tmax,An

Letd, = u* —z,d, = v* —y, and
dg,d,
y): ( J)

az,
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Fig. 4. Re-orientation of the kernel at each iteration.

6) Refine the angular range: Let n := n — 1, and repeat
steps 4)—6) until n = 0.

7) Determine the points of saliency: Define the centers of
mass or completed boundaries by thresholding the vote
image

C= {(.177y)|V(:Ey, Tminarmax:Ao) > F'v} .

In step 6) of the above algorithm, 7, and 7yax remain sta-
tionary, and only the voting spread, defined by A, is reduced
and becomes more focused. The kernel evolution is shown in
Fig. 3. The only remaining variable is the impact of a partic-
ular edge detector on voting. In the current implementation, the
edge detector corresponds to the derivative of the Gaussian with
o = 1. Larger values of o simply diffuse noise and reduce the
voting intensity due to reduced edge magnitude across the en-
tire image, but this only reduces the amplitude in the voting
landscape globally and has no other impact. Smaller values of
o amplify noise and the edge strength at the same time. How-
ever, noise is random, and as a result, its voting contribution is
uniformly distributed in the image. On the other hand, voting
results corresponding to true edges tend to be directed and fo-
cused to the center of mass.

A. Initialization of Voting Direction and Magnitude

In the absence of prior knowledge about object locations, it is
reasonable to assume that the center of mass is positioned along
the gradient direction of the object boundary. The main intent
is to integrate the contribution of all edge locations on the grid,
which may be densely or sparsely distributed, as shown in Fig. 1.
Unlike the existing practice of grouping illusory contours into a
continuous representation [9], we aim at localizing gross islands
of information.

B. Updating Voting Direction

Voting along the gradient direction provides a hypothesis pro-
file for saliency, which is initially quite ambiguous. At each con-
secutive iteration and each edge location, the kernel is refined
and reoriented along the maximum value in its search window,
as shown in Fig. 4. For each point P, if () is the maximum in
P’s voting area, then the new voting direction at P is along the
PQ direction. The rationale for choosing the maximum as the
estimated center is as follows.

1) Under ideal conditions, the maximum value is exactly the

center of mass.

2) By aligning the voting direction along the maximum
values, local maxima in the same neighborhood are
grouped together.

3) Localization of the maximum is not compute intensive.
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Fig.5. Detection of radial symmetries for a synthetic image with multiple over-
lapping objects: (a) original image; (b)—(g) voting landscape at each iteration;
(h) final localization of centers of mass.

(@ (b) (©) (d)

Fig. 6. Evolution of radial voting on a nuclear image: (a) original image with
edges being projected inward in the directions of the voting kernels; (b)—(d)
voting landscapes from a subset of iterations. Notice that the initial bimodal
voting landscape is eventually condensed into a single convex region.

As pointed out in the previous section, existing methods use
either a single line (A = 0) or a constant angular range (A >
0). Voting along a single line provides a better local maximum
but suffers from noise and small variations in scale. Here, the
angular range is initialized to a large number, which is gradually
decremented to zero. As a result, the voting landscape is refined
and focused from coarse to fine. Eventually, radial symmetry or
saliency along a boundary is reduced to a single isolated point
or a group of points that is strongly clustered together.

An example of the application of radial kernels to synthetic
overlapping objects is shown in Fig. 5 together with the inter-
mediate results. The voting landscape corresponds to the spa-
tial clustering that is initially diffuse and subsequently refined
and focused into distinct islands. A more visual example jus-
tifying the iterative nature of the technique is shown in Fig. 6.
Notice that the voting landscape is not initially localized; how-
ever, through continued refinement, a more refined landscape
has emerged.

C. Computational Complexity

The computational complexity of the iterative voting al-
gorithm is now analyzed. Let us examine the voting area
A(Z, Y; "min, Tmax, A) defined by (1). The cost of generating
such a voting area is very high. To solve this problem, a voting
direction can be quantized into 2"* angular bins, e.g.,

omi . omi
cos = Gin ) i =0,1,---,2™ — 1
2777, 2m

and a template voting area may be generated and stored for each
angular bin. The number of angular bins is usually set to 2* =
16, or 2° = 32. Compared to the voting operation, the cost
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of precomputing and searching these templates can be ignored.
The computational complexity of performing a single voting
operation at iteration n is O(K (72, — r2; )A,), where K
is the number of pixels in the original image. If we select the
sequence of angular ranges to be A,, = A,.xn/N, where N is
the number of iterations, then the total complexity of the voting

operations is

N
Z K (’rl?uax - ’rl?nin) Amaxn/N =0 (KNAHI&X (Tr2nax - 7"r2nir1) ) .
n=0

Essentially, the complexity is determined by the image size and
the predetermined radial and angular ranges, which depend on
the geometric shapes of the objects of interest. If the objects are
known to be nearly circular, then A,y and ( —7r2,)can
be set to be quite small, and O(K N A ax( —7r2,.)) may
be reduced to as low as O(KN).

2
Tmax

2
Tmax

IV. VOTING PARAMETERS

The voting algorithm contains a number of parameters that
need to be appropriately defined. Each of these parameters and
its impact on the voting process is analyzed below.

» Voting area: For radial voting, the algorithm can be tuned
to look exclusively for dark or bright objects, or both, by
selecting the signs in (1), which dictate whether the kernels
are oriented in the direction of positive versus negative gra-
dient. For bright objects, A(Z, ¥; Tmin, Tmax, A) 1S set to

AF (2,43 Tmin, Tmax; A) = {( + 7 cos ¢,y + rsin @)
T'min S T S rmaX76(x7y) - A S ¢ S H(xy) + A}

For dark objects, A(Z, ¥; "min; Tmax, A) is set to

A7 (2, Y5 "min, Tmax, A) := {(z — rcos g,y — rsin ¢)|
T'min S T S Tmaxve(wvy) - A S (,b S ﬂ(x,y) + A} .

In the case of tangential voting, or if we want to detect both
bright and dark objects, then bidirectional voting is needed

Ai(:v, Y5 Trmins Tmax; A)
= A+(£177 Y: "min, "max; A) UA~ (LE, Y5 "min, Tmax, A)

» Voting magnitudes: The voting profile contributed by each
pixel is a function of its strength (e.g., gradient magnitude).
Weak features can be thresholded with a small value, I'y,
to improve computational efficiency; however, this is not a
necessary step. It is the edge magnitude and organization
of edges that contribute to the voting landscape, thus sup-
pressing random noise even further.

* Radial and angular ranges: The bounds 7, and 7, On
the radial range, and the maximum angular range A, .,
are preselected given the shapes of the objects to be de-
tected. For example, to detect circles, we can set 7yi, =
Tmax and Ap.x = 0, and to detect ellipses of the form
(z%/a?) + (y?/b?) = 1, we set 7yin = min(a, b), Tmax =
max(a, b),and A .y = arcsin(|a®—b2|/(a®+b?)), which
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Fig. 7. Synthetic images perturbed with noise: (a), (b) objects with incomplete
boundaries; (c), (d) checkerboard with increasing amount of noise.

(d)

is the maximum angle between the radial and the gradient
(normal) vectors of the ellipse (e.g., ZOP1Q1, ZOP>Q5,
and ZOP3Q3 in Fig. 2). While these are ideal cases, toler-
ances are added for real-world images.

o Step size in the evolution of kernel shape: An important
value in the protocol is the step size with which the voting
area is iteratively reduced. If the step size is too large, then
the centers of mass or boundaries will be fragmented, and
if it is too small, then the computational cost will rise.
The monotonically decreasing sequence, Ay .x = Ay >
An_1 > --- > Ag = 0, controls the convergence rate of
the algorithm. Each time the voting direction is updated,
the angular range is decreased to shrink the voting area. In
our system, the interval [0, A,ax] is equally partitioned,
and the maximum value is set interactively. For an object
demonstrating simple circular geometry, a few iterations
(e.g., N = 4) are adequate. A higher value is necessary for
noisy images with overlapping objects.

» Threshold of output image: The final vote image is always
ranked. In some cases, a threshold I';, may be set to select
the most prominent set of hypotheses.

V. PERFORMANCE ANALYSIS

The proposed method for detecting saliency has been applied
to a wide variety of object classes across various application do-
mains. We will show that our method is tolerant to variations in
scale and geometry, has excellent noise immunity, and can de-
tect overlapping objects with incomplete or perceptual bound-
aries. The only comparison has been with the Hough transform,
which did not perform well on test images, and the results have
not been reported.

1) Synthetic Data: Fig.7 shows several synthetic images cor-
rupted by noise, where the detection results are marked by dark
squares. The boundary information in Fig. 7(a) and (b) is in-
complete, so the problem is one of perceptual grouping. The
algorithm detects the centers of the five objects successfully.
Fig. 7(c) and (d) shows the correct detection and localization
of symmetries in noisy images. The voting method is applied
along the radial direction to detect an approximate location of
centers of mass of both bright and dark noisy regions. For a more
detailed assessment, we have opted for test data consisting of
two overlapping circles that are corrupted by noise and change
in scale (e.g., radius of the circles). In both experiments, pa-
rameters are constant, and never changed; these are 7y,,x = 25
and A = 20. Other parameters such as 7,;, = 1 and voting
threshold I', = 50 have minimal effect on the final outcome.
Fig. 8 shows the detection result when the signal-to-noise ratio is
varied from 26 to —6 dB. To demonstrate variability to scaling,
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Fig. 8. Detection of radial symmetries for a synthetic image with two overlap-
ping circles and gradual increase in noise: (a) SNR = 26 dB; (b) SNR = 20 dB;
(c) SNR = 12 dB; (d) 6 dB; (e) 0 dB; (f) —3.5 dB; (g) —6.0 dB. Noise has no
effect in (a)—(d) and (f), but there are false positives in (e) and (g). Even at high
SNR, iterative voting detects objects of interest, but at the cost of increased false
alarms.

(b) (© (d)

Fig. 9. Detection of radial symmetries for synthetic images with two overlap-
ping circles and a gradual change in the size of the radius by up to £60% from
the reference image (c): (a-b) results after the size reduction; (c) detection results
where the parameter setting is performed; and (d-e) results following expansion.

(a) (b) ©)

Fig. 10. Cells imaged in bright field and florescence: (a) the image demon-
strates complex intensity distributions in the imaging signatures of each cell;
(b) the voting technique localizes the position of each cell even though some
are adjacent to each other; (c) iterative voting provides initial seeding for
nuclei from a 3-D cell culture model with overlapping compartments. These
images demonstrate potential conditions where segmentation through boundary
completion remains ambiguous, as indicated by the arrows. However, through
seeding and subsequent tessellation, a more meaningful localization can be
inferred.

the radius of each circle was altered by up to 60%, with the de-
tection result shown in Fig. 9. These results indicate tolerance
to noise and scale (e.g., object size) for a well-defined object.
2) Real Data: Several examples from different modes of mi-
croscopy at different physical scales are demonstrated. The first
group, shown in Fig. 10(a) and (b), corresponds to cells imaged
in bright field that have gone through apoptosis (cell death) as a
result of an exogenous stimuli. The image shows a nonuniform
intensity distribution within each cell, with cells overlapping
each other. It is also an example, where tensor voting through
boundary completion may fail to separate touching cells.
Another example, corresponding to a 3-D cell culture model,
is shown in Fig. 10(c), where overlapping nuclei are clearly
delineated. Again, segmentation through boundary completion
methods (e.g., tensor voting) will not produce desirable results.
However, through seeding and subsequent tessellation, a more
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Fig. 11. (a) Fixed sample from C. elegans observed through fluorescence mi-
croscopy; (b) detected nuclei.

(a) (b)
(d) (e) )

Fig. 12. Evolution of the voting landscape for localization of nuclei in a mouse
mammary tissue section: (a) original image; (b)—(e) refinement of the voting
map; (f) final localization of radial symmetries.

confined local neighborhood can be constructed. The second
group, shown in Fig. 11, corresponds to nuclear localization
in developmental biology to study proliferation rates. In this
case, samples at different time points are fixed and imaged
with an epi-fluorescence microscope to examine the kinetics
of cell division in the C. elegans model system under different
treatments. The technique is being used to build a stochastic
representation of the growth rate from these studies. The third
group, shown in Fig. 12, is an example of mouse mammary
tissue imaged with confocal microscopy. The nuclei have a
number of substructures corresponding to chromatin that add
texture to the nuclear regions; they possess a wide variety
of geometric shapes, and their boundaries overlap. In this
example, intermediate results of the iterative voting are shown
to demonstrate the refinement behavior of the technique. The
fourth example, shown in Fig. 13, corresponds to small protein
assemblies, which are potentially related to double-strand
breaks as a result of ionizing radiation. In this case, radial
voting is used as an interest operator to count the number of
these protein assemblies in each nucleus. These assemblies are
heterogeneous in scale and intensity; as a result, intensity-based
thresholding may not produce reliable detection results. Studies
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(b)

Fig. 13. Fluorescence assay for H2ax proteins indicates punctate events within
the nuclear regions: (a) original; (b) detected assemblies at a specific scale and
dimension. Isolated detected events outside of the nuclear regions can be filtered
in context.

(b)

Fig. 14. CryoEM image: projections of protein structures observed with a
transmission electron microscope are often noisy and, and depending upon the
3-D resting position, the protein structure’s geometric projections are diverse.

The voting technique detects radial symmetries in the presence of noise and
significant geometric variation: (a) original image; (b) detected structures.

(@

have shown that the number of these protein markers correlates
with the radiation dosage. The final group, shown in Fig. 14,
corresponds to a protein structure with two stable positions,
and imaged with cryo-electron microscopy. The image is very
noisy (as a result of small exposure time to reduce radiation
damage) and contains objects with different geometries.

These images demonstrate that 1) objects of interest often
have variable scales and topologies, 2) objects of interest often
overlap, and 3) a significant amount of noise—both random and
speckle—is often present. In all four groups of images, the radial
voting method successfully localizes the centers of mass of the
objects of interest.

VI. EXPERIMENTAL RESULTS

The above voting method has been applied to detection of
foci formed by phosphorylation of histone YH2AX following
ionizing radiation. A system has been developed to segment the
nuclear regions [16], which provide context for quantifying pro-
tein localization. However, segmentation of foci is complicated
as a result of variation in 1) background intensity, 2) foreground
intensity, 3) sample preparation, and 4) instrument configura-
tion. Furthermore, our experience indicates significant intensity
crosstalk between neighboring foci. While voting provides an
initial localization of foci, a robust method for accurate seg-
mentation is needed. Our proposed approach is based on 1) es-
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(b)

Fig. 15. Spot detection and neighborhood formation with Voronoi tessellation:
(a) original image; (b) detected spots and Voronoi tessellation forming a local
neighborhood for estimating background and foreground density.

Fig. 16. Three-dimensional visualization of foci in a single nucleus: (a), (c) top
views; (b), (d) side views.

tablishing a local neighborhood for each of the foci based on
Voronoi tessellation, as shown in Fig. 15, which is also bounded
by the maximum size of the foci, and 2) modeling the local in-
tensity distribution as a mixture of two Gaussian distributions,
whose latent variables are estimated using the expectation-max-
imization method [2]. The technique has been validated on syn-
thetic data with and without noise, and then applied to real data.
Two data sets from a recent experiment have been used for de-
tailed quantitative analysis. In this experiment, cells were ir-
radiated and then fixed at different time points for a kinetics
analysis. The results were then compared with the control data
set (e.g., zero irradiation) that provides an estimate of the back-
ground foci formation as a normal cell process. Samples were
irradiated in such a way that the 2-D and 3-D image acquisition
produces the same number of foci in each case. Furthermore, the
voting technique is extended and implemented in 3-D for com-
parative analysis, and two examples of 3-D segmentation results
are shown in Fig. 16. Samples were initially imaged in 3-D, and
2-D images were obtained through maximum projection along
the Z axis. Foci were then counted and segmented for each nu-
cleus in the image. Each image has approximately 50 cells, and
there are a total of 128 images corresponding to control and ir-
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Fig. 17. Kinetics of DNA repair as measured by phosphorylation of 7H2AX
protein as measured from maximum and projection data (a) and the original 3-D
data from full 3-D analysis (b). Total of 128 images corresponding to control and
irradiated have been processed.

radiated samples. The kinetics of foci loss, as measured by re-
duction of the number of foci, is shown in Fig. 17. These plots
indicate that the kinetics of the foci losses are fast and occur
within the first 8 hours. Although 3-D voting is computation-
ally more expensive, it tends to be more robust since 1) more
information is present on each foci, and 2) there are fewer am-
biguities as a result of crosstalk between foci at adjacent focal
planes.

VII. CONCLUSION AND FUTURE WORK

A new iterative approach for detecting saliency in biolog-
ical images has been introduced. The main novelties are 1) a
re-estimation of voting direction and 2) an update of the voting
fields by focusing their energy at each consecutive iteration.
We suggest that a dynamic and evolutionary voting strategy
overcomes the drawbacks of traditional static voting. The pro-
posed method can be viewed as sharing two features of the self-
organizing map [5]: 1) a gradual reduction in the neighborhood
size, and 2) the winner-take-all strategy. In our case, the neigh-
borhood size is reduced, but along a specific orientation, and
the kernel is always adjusted by the local maximum in its field
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of view. The voting algorithm can provide a general framework
for inferring a variety of types of low-level saliency by simply
modifying the kernel shapes and external force measured from
the image (gradient, curvature, etc.). The performance of this
method has been demonstrated on synthetic and real data con-
taining noise, variation in scale (e.g., object size), and presence
of perceptual boundaries. Although the method has been applied
to a specific biological problem to estimate the formation and
resolution of radiation-induced nuclear foci, a wider applica-
tion of the method to atmospheric images and facial data has
been presented earlier. The data and software are posted on the
group’s website at http://www.vision.lbl.gov/ under the Soft-
ware section.
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